
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Demonstrating Headphone-Sensed, Accessibility-Informed Head Pointing with
Snapping for Inclusive Interaction

MYKHAILO TARASENKO, National University of Kyiv-Mohyla Academy, Ukraine and MacPaw, Ukraine

IRYNA PASTUKHOVA,MacPaw, Ukraine

OLEKSANDR FRANKIV, National University of Kyiv-Mohyla Academy, Ukraine and MacPaw, Ukraine

ANASTASIIA SATARENKO,MacPaw, Ukraine

NATALIIA STULOVA,MacPaw, Ukraine

SERGII KRYVOBLOTSKYI,MacPaw, Ukraine

Fig. 1. General head pointing approach architecture with detalisation of captured data and detected gesture visualization

The mouse pointer is central to direct-manipulation graphical user interfaces, and modern desktop operating systems provide
accessibility features that enable pointer control via eye or head movement. Existing solutions, such as Eye Control on Windows and
Head Pointer on macOS, rely on continuous video capture, which makes them sensitive to lighting conditions and user position and
raises privacy concerns. In this work, we demonstrate a head-pointing approach based on head movements captured by the gyroscope
and accelerometer sensors of commercial headphones. To improve pointing precision, we implement pointer snapping that leverages
accessibility information from application user interfaces. This approach is independent of camera placement and lighting conditions,
offers privacy advantages, and requires no specialized hardware beyond commonly used headphones, supporting more inclusive and
accessible interaction. Our demo highlights how reusing existing accessibility infrastructure can support more inclusive pointing
interactions and contribute to creating more accessible interactive systems.

CCS Concepts: • Human-centered computing → Pointing; Gestural input; Pointing devices; Accessibility systems and tools;
Systems and tools for interaction design.

Additional Key Words and Phrases: Head-based pointing, Head-based gestures, Accessibility, Gyroscope, Accelerometer, macOS

Authors’ addresses: Mykhailo Tarasenko, National University of Kyiv-Mohyla Academy, Kyiv, Ukraine and MacPaw, Kyiv, Ukraine, ms.tarasenko@
ukma.edu.ua; Iryna Pastukhova, MacPaw, Kyiv, Ukraine, iryna.p@macpaw.com; Oleksandr Frankiv, National University of Kyiv-Mohyla Academy, Kyiv,
Ukraine and MacPaw, Kyiv, Ukraine, o.frankiv@ukma.edu.ua; Anastasiia Satarenko, MacPaw, Kyiv, Ukraine, an.sat@macpaw.com; Nataliia Stulova,
MacPaw, Kyiv, Ukraine, nata.stulova@macpaw.com; Sergii Kryvoblotskyi, MacPaw, Kyiv, Ukraine, krivoblotsky@macpaw.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2026 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0009-0005-8289-7513
HTTPS://ORCID.ORG/0009-0007-9492-6881
HTTPS://ORCID.ORG/0009-0005-5264-358X
HTTPS://ORCID.ORG/0009-0004-6799-5994
HTTPS://ORCID.ORG/0000-0002-6804-2253
HTTPS://ORCID.ORG/0009-0007-8006-546X
https://orcid.org/0009-0005-8289-7513
https://orcid.org/0009-0007-9492-6881
https://orcid.org/0009-0005-5264-358X
https://orcid.org/0009-0004-6799-5994
https://orcid.org/0000-0002-6804-2253
https://orcid.org/0009-0007-8006-546X


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Tarasenko et al.

ACM Reference Format:
Mykhailo Tarasenko, Iryna Pastukhova, Oleksandr Frankiv, Anastasiia Satarenko, Nataliia Stulova, and Sergii Kryvoblotskyi. 2026.
Demonstrating Headphone-Sensed, Accessibility-Informed Head Pointing with Snapping for Inclusive Interaction. 1, 1 (January 2026),
7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION AND MOTIVATION

Mouse pointer and point-and-click workflows still remain the default expected way to interact with direct manipulation
graphical user interfaces on personal computers and laptops. For computer users with impaired mobility, or for hands-
free interaction scenarios in general, desktop operating systems vary in accessibility features and peripheral devices
supported to accept alternative pointer controls. In Windows, the desktop OS with the largest user base worldwide, an
eye mouse is available via Eye control technology. It relies solely on tracking the eye movement with a camera, and for
pointer actions, the user is presented with a movable launchpad bar with predefined actions selected by dwelling the
eye gaze on them. Moreover, its use is limited [9] “in locations with a lot of sunlight. Additionally, eye tracking works
differently depending on eye color, eye size, or eye shape.” On macOS, the second most used desktop OS, the Head
Pointer technology embodies the face mouse approach. It also uses a camera, processing user face expressions and head
movement for cursor actions and position change, respectively. Limitations [7] of this technology include “the ambient
lighting being too bright or dark, the user being too close to or far from the camera, or them not being centered in
front of the screen”. Moreover, reliance of both solutions on camera feed requires either a built-in camera, an additional
camera, or a camera-equipped device, and introduces user privacy concerns that need to be mitigated additionally.

Among the head-based pointing methods, head mouse approach is another possible implementation of a relative
pointing device. Research to date shows that when head mobility is a possible scenario, relative head-based pointer
controls are preferred over absolute eye gaze-based ones [1, 4, 5]. Current head pointing solutions differ in the hardware
used to capture head movement, including head-based cameras [13], optical sensors on the neck [6], head and mouth
pieces [3], or glass-mounted sensors [12]. Recently, modern headphones were considered as a general-purpose input
device [10]. While the proposed solutions differ in their implementations of pointer actions, the use of gyroscope and
accelerometer sensors has become a shared pattern, nowadays also present in commercial head- and earphones.

In this work, we demonstrate an approach to extend the capabilities of an existing wearable device, like headphones,
to the task of head pointing. While only using two sensors for head position tracking, we take advantage of application
user interface (UI) annotations, which are available in macOS as a part of its accessibility features, as an information
source to improve pointing precision, naming it pointer snapping and making it informed, aligning with the user
interaction intent. Using accessibility information instead of gaze allows for avoiding limitations of the environment
and focusing on actual interaction. We implement left and right mouse click actions with head gestures and showcase
user learning and app interaction.

2 BACKGROUND

We briefly outline the relevant for our approach software and hardware components of the Apple ecosystem.
Accessibility-related functionality in computer system interfaces helps people with different types of needs, such

as vision, speech, mobility, cognitive, and hearing, to interact with their devices. Accessibility1 framework in macOS
supports developers in building systems that address a wide range of access needs through a comprehensive set of APIs.
One of the framework features is the accessibility tree, like one shown in Figure 2 (right), that represents an app’s user
1https://developer.apple.com/documentation/accessibility

Manuscript submitted to ACM

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://developer.apple.com/documentation/accessibility


105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Demonstrating Headphone-Sensed, Accessibility-Informed Head Pointing with Snapping for Inclusive Interaction 3

1 "children":[
2 {"id": "ad6e8c1d",
3 "name": null,
4 "role": "AXButton",
5 "description": "Equals",
6 "role_description": "button",
7 "value": null,
8 "absolute_position": "827.00;699.00",
9 "position": "172.00;349.00",
10 "size": "48;48",
11 "enabled": true,
12 "bbox": [172,349,220,397],
13 "visible_bbox": [172,349,220,397],
14 "children": []
15 }
16 ...
17 ]

Fig. 2. A match between UI elements in a Calculator app and the respective JSON of the accessibility tree (the “=” button fragment)

interface and is used by assistive technologies like VoiceOver2 to parse the UI hierarchy of the currently focused window
opened on the user’s desktop.

The other core framework of interest to us is CoreMotion3 that processes motion- and environment-related data
from the onboard hardware of wearable devices. Our approach supports all headphones that are compatible with the
CoreMotion’s CMHeadphoneMotionManager class according to the isDeviceMotionAvailable property. This class provides
accelerometer, gyroscope, and other position data via a specific API. All headphones that support Apple’s Spatial Audio
technology with dynamic head tracking on the device are compatible with this class4.

3 IMPLEMENTATION

Receiving data from headphones. To implement pointer movement using headphones that support Spatial Audio,
we develop an application that uses the CoreMotion framework. Using its class CMHeadphoneMotionManager, we start
tracking motion updates of the headphones by calling a method .startDeviceMotionUpdates(). As a result, our application
starts receiving information about changes in the headphones’ position in space. This information is encapsulated in a
CMDeviceMotion class, which gives access to different data, such as attitude, rotationRate, userAcceleration etc. Here, attitude
is a struct which represents the pitch, yaw, and roll aspects of motion, as shown in Figure 1.

Calibration and coordinate mapping. For our approach, headphone motion data must be mapped to the screen
coordinates. In the considered setup, the yaw value corresponds to the horizontal coordinate (𝑥), and the pitch to the
vertical coordinate (𝑦). Thus, for any pointer position (𝑥,𝑦), we have 𝑥 ∈ [0,𝑤𝑖𝑑𝑡ℎ] and 𝑦 ∈ [0, ℎ𝑒𝑖𝑔ℎ𝑡], where𝑤𝑖𝑑𝑡ℎ
and ℎ𝑒𝑖𝑔ℎ𝑡 are the screen dimensions. We assume that, on average, people can rotate their heads within a range of ±30◦

(approximately ±0.5 rad). Applying the linear interpolation, for the given yaw value, the 𝑥 coordinate can be computed as
𝑥 = 𝑥𝑚𝑖𝑛 +𝑡 · (𝑥𝑚𝑎𝑥 −𝑥𝑚𝑖𝑛) with 𝑡 = (𝑦𝑎𝑤 −𝑦𝑎𝑤𝑚𝑖𝑛)/(𝑦𝑎𝑤𝑚𝑎𝑥 −𝑦𝑎𝑤𝑚𝑖𝑛) = (𝑦𝑎𝑤 − (−0.5))/(0.5− (−0.5)) = 𝑦𝑎𝑤 +0.5,
and consequently, 𝑥 = 0 + (𝑦𝑎𝑤 + 0.5) ·𝑤𝑖𝑑𝑡ℎ = (𝑦𝑎𝑤 + 0.5) ·𝑤𝑖𝑑𝑡ℎ. By analogy, for any pitch value, the 𝑦 coordinate
𝑦 = 𝑦𝑚𝑖𝑛 + (𝑝𝑖𝑡𝑐ℎ + 0.5) · ℎ𝑒𝑖𝑔ℎ𝑡 = (𝑝𝑖𝑡𝑐ℎ + 0.5) · ℎ𝑒𝑖𝑔ℎ𝑡 .

To generalize our approach and reduce dependence on the user distance from the screen, the yaw and pitch values
are calibrated before applying interpolation. For this, the user is asked to approach four near-corner points on the screen
2https://developer.apple.com/documentation/accessibility/voiceover
3https://developer.apple.com/documentation/coremotion
4https://developer.apple.com/videos/play/wwdc2023/10179/

Manuscript submitted to ACM

https://developer.apple.com/documentation/accessibility/voiceover
https://developer.apple.com/documentation/coremotion
https://developer.apple.com/videos/play/wwdc2023/10179/


157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Tarasenko et al.

Fig. 3. Calibration process starts in a window Fig. 4. Books app with pointer snapping

(see Figure 3) with the head pointer, providing user-specific extreme yaw and pitch values. Using the corresponding
spans allows us to adjust the observed yaw and pitch values to the agreed-upon “universal” range above, ±0.5 rad.

Pointer snapping approach. Precise hovering, maintaining focus, and interacting with UI elements, especially small
or closely spaced ones, can be challenging with head pointing. To address this issue, we introduce the snapping pointer
approach. We equip each UI element with a targeting neighborhood that slows the pointer, snaps it, and targets it
towards the center. Directing a pointer to the intended UI element requires determining the precise position and size
of the closest available element. We continuously monitor the change of the active application to capture the user’s
context at each point in time. We traverse the accessibility tree of the active application to obtain UI elements, along
with their positions on the screen, sizes, roles, actions, and other attributes. The Accessibility API allows us to respond
to UI changes immediately. We further filter interface elements based on their accessibility roles such as AXButton,
AXPopUpButton, and supported actions such as kAXPressAction, kAXShowMenuAction, relevant to pointer interaction.

Another consideration is the pointer snap itself. To make focusing on the UI element easier, we increase the motion
threshold in the targeting neighborhood and highlight the element as it is approached. If the pointer is directly snapped
to and released from the element’s neighborhood, from the user’s perspective, it feels like jumping and resistance. Also,
even though there is almost always only one nearest element (target) at any given moment, in the case of close elements,
because the pointer is very sensitive, even a small, often unintentional move can change the target. These rapid changes
of the target generate oscillation between the close or intersecting neighborhoods, something like a “ping-pong” effect.
All the above effects are mitigated by introducing the hysteresis, such that the threshold for entering the element is
lower than for exiting it. At the same time, if the pointer enters the element itself rather than only its corresponding
targeting neighborhood, it is selected immediately, enabling smooth navigation through list-like interfaces.

Gestures implementation. The ability to move the pointer alone does not provide complete interaction with the
UI. For the purpose of the approach demonstration, we implement left- and right-click actions as a minimal set of
interactions. We select head tilts for this purpose, as they are intuitive and rely on the motion roll values that are not
yet utilized by our approach, unlike pitch and yaw. Our calibration provides the maximum and minimum roll values,
which represent the range of neutral head positions. We will refer to them as the stability interval. We define a click
gesture as a time-bounded (0.8s) sharp tilt toward the corresponding side initiated inside the stability interval, followed
Manuscript submitted to ACM



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Demonstrating Headphone-Sensed, Accessibility-Informed Head Pointing with Snapping for Inclusive Interaction 5

Fig. 5. Roll, rotation rate, and acceleration signals for left and right click gestures

by a rapid return to the starting position. Since the end point of the gesture does not always coincide precisely with the
start point, half the stability interval tolerance is allowed.

Figure 5 presents the roll, rotation rate, and acceleration signals for the left and right clicks, respectively, highlighting
that acceleration provides the most reliable indicator of the user’s gesture intent. We observe that during a left-click
gesture, acceleration changes sign from negative to positive. In contrast, during a right-click gesture, the opposite
pattern occurs, enabling a reliable distinction between them. Thus, a left click is modelled as a sequence of three states
in terms of acceleration: (1) neutral (head roll is within the stability interval), (2) tilt toward the left side, initiated
by passing the acceleration negative threshold, (3) return to neutral, detected by acceleration change to positive and
neutral head position adjusted according to the tolerance, as shown in Figure 1 (right bottom). This sequence must occur
within a predefined time window. By analogy, the right click is identified using the inverse acceleration pattern. The
acceleration threshold was initially set to the mean of the minimum absolute values observed across 200 recorded left-
and right-click events from one of the authors, and then tuned through empirical evaluation to improve generalization
with the final value of 7.0 rad/s2.

Performing the gestures obviously induces significant changes in pitch and yaw, moving the pointer away from
the intended element and resulting in clicks at unpredictable points. To prevent this, we further refine the snapping
pointer with a freezing pointer effect. After holding an element in focus for some time, the pointer temporarily freezes,
allowing the user to perform a gesture with greater precision. The focusing and freezing phases involve highlighting the
corresponding element with different colors to provide visual feedback to the user (e.g., see Figure 4). In our experiments,
a duration of 700 ms was sufficient to consider the element approach intentional without hindering natural movement,
while 1.5 s of freezing allowed for deciding on and performing a gesture.

4 DEMO

To let users experience the proposed head pointing technique, we developed two training mini-games (Figure 6).
We’ve developed a mini-game called Tiles to introduce the user to basic pointer control and clicking gestures. This

application allows users to capture an image with a built-in laptop camera and use it as a puzzle. The image is divided
into a grid of 3 × 3, and the tiles are randomly shuffled. Users select and place tiles using the pointer input. We adapted
the interaction to a click-based mechanism: a tile attaches to the pointer on a left click and can be released with the
same click while hovering over the target location.

We developed the Bannersmini-game to familiarize users with the effective use of the snapping pointer. It simulates
the appearance of multiple intrusive advertisement-like windows on the desktop. Users are instructed to close all
banners by clicking on a system-like close button on the header of each window. The close buttons are intentionally

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Tarasenko et al.

Fig. 6. Tiles (left) and Banners (right) mini-games’ interfaces

small, comparable to the default size in macOS. When the pointer approaches a button, a snapping mechanism attracts
the pointer toward the target, facilitating reliable selection.

5 DISCUSSION AND CONCLUSION

We demonstrated an approach to desktop head pointing for mouse pointer control that leverages accessibility annotations
in direct-manipulation graphical user interfaces. While our implementation is presented in the context of the Apple
ecosystem, the proprietary technologies are not foundational to it. Instead, we showcase how leveraging the developer-
facing parts of OS frameworks and building on existing system support for sensor data and accessibility information
allows us to complement and extend accessibility functionalities. Our work highlights how accessibility technologies
can benefit a broad range of users beyond those requiring accommodations, and we hope it will encourage operating
system and application developers to further adopt and maintain accessibility annotations and functionalities.

In the hardware part, our approach relies on headphones and earphones equipped with a combination of accelerometer
and gyroscope sensors. These two sensors are an integral part of various headset-based solutions to head pointing [2,
8, 11], and while full headsets allow for richer interactions with the desktop computers and other electronic devices,
we believe we have shown that even with minimal hardware use full point-and-click workflows become achievable.
Another consideration we had in mind was the reuse of existing technologies and electronics. By extending the use of
widely available consumer hardware, our approach also points toward more sustainable interaction design practices,
which could minimize the e-waste problem.

ACKNOWLEDGMENTS

We thank the Armed Forces of Ukraine for providing security to complete this work.We thankMariia Kak and Vladyslav
Makariuk for their help with accompanying video production, and Kseniia Dobrieva and Anastasiia Kyiashko for
consultations on legal matters. This is an independent research publication, and it has not been authorized, sponsored,
or otherwise approved by Apple Inc. Apple, Apple Books, AirPods Pro, and AirPods Max are trademarks of Apple Inc.

Manuscript submitted to ACM



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Demonstrating Headphone-Sensed, Accessibility-Informed Head Pointing with Snapping for Inclusive Interaction 7

REFERENCES
[1] R. Bates and H. O. Istance. 2003. Why are eye mice unpopular? A detailed comparison of head and eye controlled assistive technology pointing

devices. Universal Access in the Information Society 2, 3 (2003), 280–290. https://doi.org/10.1007/s10209-003-0053-y
[2] Aaron Castillo, Graciela Cortez, David Diaz, Rayton Espíritu, Krystle Ilisastigui, Bryce O’Bard, and Kiran George. 2016. Hands free mouse. In 2016

IEEE 13th International Conference onWearable and Implantable Body Sensor Networks (BSN). 109–114. https://doi.org/10.1109/BSN.2016.7516242
[3] Rodrigo Duarte, Nuno Vieira Lopes, and Paulo Jorge Coelho. 2025. A Low-Cost Head-Controlled and Sip-and-Puff Mouse: System Design and

Preliminary Findings. Electronics 14, 24 (2025). https://doi.org/10.3390/electronics14244953
[4] David G. Evans, R. Drew, and Paul Blenkhorn. 2000. Controlling mouse pointer position using an infrared head-operated joystick. IEEE Transactions

on Rehabilitation Engineering 8, 1 (2000), 107–117. https://doi.org/10.1109/86.830955
[5] Gareth Evans and Paul Blenkhorn. 1999. A Head Operated Joystick–Experience with Use. (1999). Technical report. https://eric.ed.gov/?id=ED430330.
[6] Ali Heydarigorji, S. M. Safavi, Ch. T. Lee, and P. H. Chou. 2017. Head-mouse: A simple cursor controller based on optical measurement of head tilt.

In 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB). 1–5. https://doi.org/10.1109/SPMB.2017.8257058
[7] Apple Inc. 2025. Move the pointer using head pointer on Mac. Online. https://support.apple.com/guide/mac-help/use-head-pointer-mchlb2d4782b/

26/mac/26.
[8] Mohammad Ridwan Kabir, Mohammad Ishrak Abedin, Rizvi Ahmed, Saad Bin Ashraf, Hasan Mahmud, and Md. Kamrul Hasan. 2024. Auxilio and

Beyond: Comparative Evaluation, Usability, and Design Guidelines for Head Movement-based Assistive Mouse Controllers. arXiv:2210.04483 [cs.HC]
https://arxiv.org/abs/2210.04483

[9] Microsoft. 2019. Eye control troubleshooting guide. Online. https://support.microsoft.com/en-us/windows/eye-control-troubleshooting-guide-
83352d28-688a-e29c-4b5f-e91aee324259.

[10] Payod Panda, Molly Jane Nicholas, David Nguyen, Eyal Ofek, Michel Pahud, Sean Rintel, Mar Gonzalez-Franco, Ken Hinckley, and Jaron Lanier.
2023. Beyond Audio: Towards a Design Space of Headphones as a Site for Interaction and Sensing. In Proceedings of the 2023 ACM Designing
Interactive Systems Conference (Pittsburgh, PA, USA) (DIS ’23). Association for Computing Machinery, New York, NY, USA, 904–916. https:
//doi.org/10.1145/3563657.3596022

[11] Rafael Raya, Javier O. Roa, Eduardo Rocon, Ramón Ceres, and José L. Pons. 2010. Wearable inertial mouse for children with physical and cognitive
impairments. Sensors and Actuators A: Physical 162, 2 (2010), 248–259. https://doi.org/10.1016/j.sna.2010.04.019 Eurosensors XXIII, 2009.

[12] Andreia Sias Rodrigues, Vinicius Kruger da Costa, Rafael Cunha Cardoso, Marcio Bender Machado, Marcelo Bender Machado, and Tatiana Aires
Tavares. 2017. Evaluation of a Head-Tracking Pointing Device for Users with Motor Disabilities (PETRA ’17). Association for Computing Machinery,
New York, NY, USA, 156–162. https://doi.org/10.1145/3056540.3056552

[13] Dariusz Sawicki and Piotr Kowalczyk. 2018. Head Movement Based Interaction in Mobility. International Journal of Human–Computer Interaction
34, 7 (2018), 653–665. https://doi.org/10.1080/10447318.2017.1392078 arXiv:https://doi.org/10.1080/10447318.2017.1392078

Manuscript submitted to ACM

https://doi.org/10.1007/s10209-003-0053-y
https://doi.org/10.1109/BSN.2016.7516242
https://doi.org/10.3390/electronics14244953
https://doi.org/10.1109/86.830955
https://eric.ed.gov/?id=ED430330
https://doi.org/10.1109/SPMB.2017.8257058
https://support.apple.com/guide/mac-help/use-head-pointer-mchlb2d4782b/26/mac/26
https://support.apple.com/guide/mac-help/use-head-pointer-mchlb2d4782b/26/mac/26
https://arxiv.org/abs/2210.04483
https://arxiv.org/abs/2210.04483
https://support.microsoft.com/en-us/windows/eye-control-troubleshooting-guide-83352d28-688a-e29c-4b5f-e91aee324259
https://support.microsoft.com/en-us/windows/eye-control-troubleshooting-guide-83352d28-688a-e29c-4b5f-e91aee324259
https://doi.org/10.1145/3563657.3596022
https://doi.org/10.1145/3563657.3596022
https://doi.org/10.1016/j.sna.2010.04.019
https://doi.org/10.1145/3056540.3056552
https://doi.org/10.1080/10447318.2017.1392078
https://arxiv.org/abs/https://doi.org/10.1080/10447318.2017.1392078

	Abstract
	1 Introduction and Motivation
	2 Background
	3 Implementation
	4 Demo
	5 Discussion and Conclusion
	Acknowledgments
	References

