
R+R: State of the Application Sandboxing on macOS:
A Differentiated Replication

Iryna Pastukhova
iryna.p@macpaw.com

MacPaw
Kyiv, Ukraine

Ivan Synytsia
sip@macpaw.com

MacPaw
Kyiv, Ukraine

Nataliia Stulova
nata.stulova@macpaw.com

MacPaw
Kyiv, Ukraine

ABSTRACT
Background. Application sandboxing is a common practice in
mobile and desktop operating systems, employed to prevent unau-
thorised resource access and protect users from malicious apps.
In the context of macOS, the second most widespread desktop op-
erating system, little has been studied on the topic of application
security outside of malware research. Blochberger et al. [3] per-
formed an exploratory study of two application marketplaces for
macOS in 2019, comparing sandboxing adoption in apps from the
official app marketplace and a third-party one.

Aim.While their study provides very useful insights both for
researchers and practitioners, by design, it excludes open-source
apps, a limitation we aim to address in our current work.

Methods. We conduct a differentiated replication study, extend-
ing the application dataset to include open-source apps. Given the
time difference between the original study and ours, we also check
if the original results hold in the newer macOS version.

Results.We confirm the original observations on sandbox adop-
tion practices, noticing a significant improvement in sandboxing
mechanism adoption in the closed-source apps from a third-party
store. We also demonstrate the similarity of the results between
sandbox adoption in closed- and open-source applications.

Conclusions.Ourwork confirms the applicability of the original
sandboxing analyses in different contexts, such as dataset or test OS
environment changes. We also demonstrate that open-source appli-
cations could be included in datasets used for the Apple ecosystem
analysis.

CCS CONCEPTS
• Software and its engineering→ Software creation and man-
agement; • Security and privacy → Software security engi-
neering.

KEYWORDS
differential replication, sandbox, macOS, open source, privilege
separation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Iryna Pastukhova, Ivan Synytsia, and Nataliia Stulova. 2024. R+R: State of
the Application Sandboxing on macOS: A Differentiated Replication. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Application sandboxing is one of the universally established mitiga-
tion techniques to prevent unauthorized resource access by applica-
tions, available in all major mobile and desktop operating systems,
including Windows1, macOS2, Linux3, iOS4, and Android5. While
the Android sandboxing mechanism historically receives the most
attention from the research community, and iOS is also studied
often, given the prevalence of mobile devices, studies on desktop
application sandboxing mechanisms are rather scarce. In the case of
macOS, the second most used desktop operating system according
to Statcounter6 and Statista7 data, only a few studies[3, 13] have
researched the app sandboxing state in the wild.

The most complete study on application sandboxing adoption
on macOS to date is Blochberger et al. [3] from 2019, which also
analyzes the larges dataset of macOS applications. However, the
study design in this work omits open-source apps, that are often
studied in the context of general malware and vulnerability research.
The absence of such apps hinders the generalization of the reference
study results for the open-source apps, and vice versa— it cannot be
said if the results obtained on open-source apps will generalize to
closed-source software, which is dominant in the Apple ecosystem.

In our differentiated replication study of [3], we focus on macOS
application sandboxing adoption 5 years later, expanding the dataset
to include more third-party app installation sources, both open
source in nature. This allows us both to see the dynamics compared
to the original study, and check the generalizability of the previous
research results to the open-source apps and vice versa.

We confirm results of the reference work in what concerns the
application sandbox adoption in the official and third-party appli-
cation stores, noticing a significant improvement in the latter one
— over 15% more apps are now properly sandboxed in accordance

1https://learn.microsoft.com/en-us/windows/security/application-security/applicati
on-isolation/windows-sandbox/windows-sandbox-overview
2https://developer.apple.com/documentation/xcode/configuring-the-macos-app-
sandbox
3e.g., Ubuntu https://ubuntu.com/core/docs/security-and-sandboxing
4https://support.apple.com/guide/security/security-of-runtime-process-sec15bfe09
8e/web
5https://developers.google.com/privacy-sandbox/overview/android
6https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-200901-
202404
7https://www.statista.com/statistics/268237/global-market- share-held-by-
operating-systems-since-2009/

https://orcid.org/0000-0002-6804-2253
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/windows-sandbox/windows-sandbox-overview
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/windows-sandbox/windows-sandbox-overview
https://developer.apple.com/documentation/xcode/configuring-the-macos-app-sandbox
https://developer.apple.com/documentation/xcode/configuring-the-macos-app-sandbox
https://ubuntu.com/core/docs/security-and-sandboxing
https://support.apple.com/guide/security/security-of-runtime-process-sec15bfe098e/web
https://support.apple.com/guide/security/security-of-runtime-process-sec15bfe098e/web
https://developers.google.com/privacy-sandbox/overview/android
https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-200901-202404
https://gs.statcounter.com/os-market-share/desktop/worldwide/#monthly-200901-202404
https://www.statista.com/statistics/268237/global-market-share-held-by-operating-systems-since-2009/
https://www.statista.com/statistics/268237/global-market-share-held-by-operating-systems-since-2009/

Conference’17, July 2017, Washington, DC, USA Iryna Pastukhova, Ivan Synytsia, and Nataliia Stulova

with the official Apple guidelines. We demonstrate that their re-
sults are observable even on a different application dataset and,
in some aspects, carry over to the open-source apps distributed
non-commercially.

2 RELATEDWORK
2.1 macOS Security
Studies considering security issues with macOS apps focus on mal-
ware analysis, relying on amix of binaries of open and closed-source
apps. In [10], authors collect 1000 macOS app binaries from OS X
Mavericks and open-source software (OSS). While the proportions
are not specified, we can assume that the OSS apps are a minor-
ity in that dataset, as the /usr/bin/ directory on macOS Sonoma
14.1.1 contains 980 binaries. In [12], the authors collect 460 app
binaries from the Mac App Store (MAS) exclusively. In [7], authors
work with 461 app binaries from MAS and the Homebrew package
manager is an almost equal proportion. In [6], authors use 853 ap-
plication binaries retrieved in an unspecified proportion from the
/usr/bin/ system directory, MAS, and the Softonic8 platform. To
the best of our knowledge, none of the previous studies investigates
whether there are significant differences in application behavior
and resource use between OSS and closed-source apps. Moreover,
dataset sizes are rather small and might not be representative of
the big picture of any of the platforms/stores.

The body of work on vulnerability research considers larger app
datasets, and in contrast with malware studies, authors collect not
just binaries but the whole application bundles9. In [13], authors
collect 1612 apps fromMAS exclusively, and in [3], which we take as
reference, authors collect 13038 apps fromMAS and the MacUpdate
platform. In it, OSS is not even considered, being a clear research
gap, contrasting with the malware research situation.

2.2 Application Sandboxing
Majority of the academic studies explore sandboxing in depth on
the mobile operating systems (Android, iOS) in the first place, with
Linux recently starting also to get attention. We already considered
studies on macOS in the previous subsection, and for Windows
sandboxing seems to be applied more often on different abstraction
levels10.

2.2.1 iOS. In [8], authors present the first systematic analysis of
the iOS container sandbox profiles; their SandScout framework au-
tomatically extracts and decompiles binary sandbox profiles. In [5],
authors present the design and implementation of a novel and effi-
cient iOS app hardening service, XiOS, that enables fine-grained
application sandboxing.

2.2.2 Android. In [4], authors propose an Android Application
Sandbox (AASandbox), which is able to perform both static and
dynamic analysis on Android programs to automatically detect
suspicious applications.

8https://en.softonic.com/
9https://developer.apple.com/library/archive/documentation/CoreFoundation/Conce
ptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-
CH101-SW13
10https://learn.microsoft.com/en-us/windows/security/application-security/applica
tion-isolation/windows-sandbox/windows-sandbox-overview

In [2], the authors describe the approach that is based on ap-
plication virtualization and process-based privilege separation to
securely encapsulate untrusted apps in an isolated environment.
In [14] authors propose AppCage, a system that thoroughly confines
the run-time behavior of third-party Android apps without requir-
ing framework modifications or root privilege. AppCage leverages
two complimentary user-level sandboxes to interpose and regulate
an app’s access to sensitive APIs.

In [1], authors perform an extensive analysis of the native code
usage in 1.2 million Android apps. They first used static analysis to
identify a set of 446k apps potentially using native code and then
analyzed this set using dynamic analysis.

2.2.3 Linux. In [9], authors provide the first analysis of sandbox
policies defined for Flatpak and Snap applications, covering 283
applications contained in both platforms.

The [11] examines current mobile sandboxing techniques and
specifies the requirements to propose a trustworthy mobile sandbox
methodology that deals with the lack of real user behavior and
overcomes the risk of sandbox evasion.

A unifying trait in the above-referenced works is the combined
use of static and dynamic analyses for sandbox operation, which is
in line with both the methodology of our reference work and our
own replication study.

3 REFERENCEWORK
Our reference work is the paper by Blochberger et al. [3], in which
they evaluate general sandbox mechanism adoption in macOS ap-
plications. First, the authors analyze the sandbox mechanism of
macOS and identify a critical sandbox-bypass. Additionally, the
authors evaluate the general adoption of the sandbox mechanism,
as well as app-specific sandbox configurations.

The following subsections provide an overview of the method-
ological details of reference work and discuss the limitations we
identified.

3.1 Context
The context of the reference work consists of the 13038 applications
retrieved from two primary sources:

• Mac App Store (MAS), the official macOS application distri-
bution platform (8366 applications downloaded)

• MacUpdate (MU), a third-party application distribution plat-
form (4672 applications downloaded)

In particular, authors have selected applications compatible with
and runnable on macOS Mojave (10.14), the fifteenth major OS
version, which was released to the public on September 24, 2018.

3.2 Design
Intending to study the sandbox adoption across the downloaded
app dataset, Blochberger et al. [3] first investigated the general adop-
tion of sandboxing and contrasted the findings between different
versions of an app as well as between the two sources MAS and MU.
Second, they evaluated app-specific sandbox configurations. Third,
they investigated privilege separation use. Finally, we describe a
sandbox bypass vulnerability, which has since been fixed.

https://en.softonic.com/
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW13
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW13
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW13
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/windows-sandbox/windows-sandbox-overview
https://learn.microsoft.com/en-us/windows/security/application-security/application-isolation/windows-sandbox/windows-sandbox-overview

R+R: State of the Application Sandboxing on macOS:
A Differentiated Replication Conference’17, July 2017, Washington, DC, USA

3.3 Data collection and analysis
MAS crawling was performed between November 2017 and Sep-
tember 2018. In that period, they scanned the MAS daily and down-
loaded all free apps and subsequent updates thereof. Due to region-
locking, only apps available to the German market could be down-
loaded. During the MU crawl, they detected 37 238 apps and at-
tempted to download the latest available version per app. Most of
them had to be filtered out, due to non-downloadable or invalid
URLs, corrupted or otherwise unreadable files, or because the apps
were outdated and not supported by modern versions of macOS
This resulted in 6164 downloaded apps, out of which 1492 were
not compatible with their test system and could not be launched,
further lowering the sample size to 4672 compatible apps as of
September 2018.

They extracted sandbox configurations and additional metadata
for each obtained app. In a first step, they statically analyzed the
apps and extracted (i) entitlements from the binaries of the app,
and (ii) app categories from the information property list (Info.plist)
of the app. The same extraction has been performed for each XPC
helper that is part of the app. In a second step, they conducted a
dynamic feature extraction to verify if sandboxing is indeed active
in the running app. They launched each app, waited for about 30
seconds to allow initialization routines to finish, and then asked
the operating system whether the app is sandboxed.

For general sandbox adoption, they considered an app as sand-
boxed if the sandbox entitlement is included in its binary and en-
abled, and dynamic analysis showed that sandboxing is indeed
active during runtime. They then reported statistics for MAS and
MU applications separately, also taking into account apps present
in both subsets.

For the evaluation of particular entitlements, they only included
entitlements that can be easily configured by developers in the App
Sandbox section of the app’s capabilities configuration in Xcode.
They then compared statistics for MAS and MU applications be-
tween themselves.

For privilege separation analysis, they investigated whether XPC
helpers have more, less, or the same privileges as the main app.

3.4 Limitations
Ourmain concern is with the dataset structure of Blochberger et al. [3].
Their dataset by design only includes closed-source apps, whereas
as we show in the section 2.1, it is common to include OSS applica-
tions into application datasets. Our suggestion for the differentiated
replication is to extend the dataset, including the OSS software, and
see how it compares with the reference study.

We were also alarmed by the high rate of apps discarded from
the MU dataset. As a part of a preliminary investigation into the
OSS apps for macOS, we collected a small dataset of apps from
GitHub and Homebrew Cask of 4663 apps and compared them with
the MU apps in terms of the date of the last app update.

We observe that while at least 1/3 of the apps are maintained
up-to-date across all datasets, almost 1/5 of the apps in two of
our datasets might represent abandonware, especially prominent
this issue becomes for the MU apps (Table 1). In the context of
application security, where vulnerabilities tend to be patched in

Table 1: Bundle last update date

Dataset 30 days 6 months 1 year 3+ years N/A
GitHub 59.55% 10.98% 5.89% 21.14% 2.44%
Brew Cask 41.08% 14.94% 6.39% 18.49% 19.1%
MacUpdate 25.79% 5.70% 3.35% 22.67% 42.49%

the newer app versions, including a dataset of apps polluted with
abandonware might significantly bias analyses.

4 DIFFERENTIATED REPLICATION
4.1 Data Collection and Processing
4.1.1 Application Crawling. We extend the original dataset of [3]
that contains Mac App Store (MAS) and MacUpdate (MU) appli-
cations to include Open Source Software (OSS) applications. Fig 1
presents the initial distribution by the store type. It is worth men-
tioning that in the sandbox state extraction phase, the number of
applications significantly reduced (see 4.1.5 for more details).

Similar to the original paper, we do not remove duplicated ap-
plications across the sources for the initial analysis, as they do not
necessarily have the same sandbox status and are different apps in
the sense of our experiment.

Figure 1: Dataset shares, per provenance source.

4.1.2 Mac App Store (MAS).

Getting application list. The MAS is the main store on the macOS
platform and hosts the largest collection of available apps for this
operating system. One way to get an extensive list of apps from
this source is to enroll into the Apple’s Enterprise Partner Feed11,
and the other is to use the iTunes Search API12 to fetch app details.

The Enterprise Partner Feed provides periodic metadata updates
of the content hosted on various Apple platforms, including apps,
books, music etc. While collecting MAS application metadata only
through this mechanism would have been straightforward, in prac-
tice, there are some notable limitations
11https://performance-partners.apple.com/epf
12https://developer.apple.com/library/archive/documentation/AudioVideo/Concept
ual/iTuneSearchAPI/Searching.html#//apple_ref/doc/uid/TP40017632-CH5-SW1

https://performance-partners.apple.com/epf
https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/iTuneSearchAPI/Searching.html#//apple_ref/doc/uid/TP40017632-CH5-SW1
https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/iTuneSearchAPI/Searching.html#//apple_ref/doc/uid/TP40017632-CH5-SW1

Conference’17, July 2017, Washington, DC, USA Iryna Pastukhova, Ivan Synytsia, and Nataliia Stulova

• it is not open-access, which makes it hard to use for app re-
search purposes, as previously reported by the Blochberger et al. [3],

• the feed updates can experience delays,
• the metadata does not include some more recent content
characteristics (e.g., various ratings), and,

• most critically, this metadata does not include application
bundleID identifier, which is necessary for application down-
load from the MAS.

Nevertheless, given access to this feed, we used it as a first source
of collecting the metadata of applications of interest (e.g., excluding
games), and used it to refine our subsequent queries to the iTunes
Search API to collect the complement application metadata and
then get the applications themselves.

Collecting application metadata. Similarly to the reference study,
we queried13 iTunes search API to obtain full application metadata.
As a URL for the API, we used the following query:

https://itunes.apple.com/search?term={term}
&country={country}&entity={entity}&genreId=genre
&limit={limit}&offset={offset}}

• For the parameter term, a list of the most popular words
(around 180 items) was selected to maximize the number of
app types and skip games.

• We had to specify a single country due to geographic restric-
tions of MAS, it is only possible to download apps available
for a specific region

• To allow data to be collected in batches, the undocumented
parameter in the API offset was used, and later, all these
batches were merged into a single list. This allowed us to
avoid the limitation of at most 200 apps returned for a query
by the iTunes Search API, faced by the Blochberger et al. [3].

Downloading applications. We wrote a custom Python script to
crawl the MAS and download the applications with the help of
the mas-cli14 tool, also used by the Blochberger et al. [3]. The tool
because of known issues15 was launched on macOS 10.14.6, which
limited the number of supported apps, as not all of them have
backward compatibility with this OS version (we discuss this issue
in more detail in Section 6). We have scheduled our downloads to
be performed at a rate of 1 app metadata download per second; this
way, we did not encounter the limitation of the iTunes Search API
that blocks too many requests in a short time.

The collection process was performed with a few attempts be-
tween December 2023 and January 2024. In total, 5310 free applica-
tions were downloaded and installed. The crawling was performed
as much as possible for the specific region, which was set in an
Apple ID on the system and launched for the BLINDED region.

4.1.3 MacUpdate (MU). As in the original paper, we included the
MacUpdate applications in our analysis. To collect the available
applications, the official site16 was scraped for the relevant meta-
data. While initially collecting over 7k applications, we experienced
13https://developer.apple.com/library/archive/documentation/AudioVideo/Concept
ual/iTuneSearchAPI/Searching.html#//apple_ref/doc/uid/TP40017632-CH5-SW1
14https://github.com/mas-cli/mas
15https://github.com/mas-cli/mas?tab=readme-ov-file#%EF%B8%8F-known-issues
16https://www.macupdate.com/

the same issues as the Blochberger et al. [3], such as many apps
not launching and not being compatible with our test setup. After
filtering our results, a total of 2239 applications were selected for
subsequent analysis.

4.1.4 Open Source Software (OSS). Wedefine the programs crawled
from GitHub and Brew Cask as the OSS dataset in our work. Of the
5027 OSS apps, 1162 are GitHub, and 3865 are Brew Cask, respec-
tively.

The Brew Cask17 complements the popular package manager for
macOS Homebrew18 with the set of GUI applications. Collecting
the Brew Cask applications is as simple as going through the list of
all the available provided in a JSON file19 and downloading them.

GitHub part of the dataset consists of two sources: Awesome
macOS open-source applications20 and apps collected by the direct
querying the GitHub API21. The queries for the latter were formed
based on the search string macos in the repository name, descrip-
tion, or readme and additionally filtered by the repository’s creation
date, last commit date, and number of stars. The latest creation date,
01-01-2019, was determined by the last update of the data reported
in [3]; we consider the repository active if the last commit date
was no later than 2023. The number of stars, 153, was chosen based
on the first quartile statistic of the Awesome macOS open-source
applications, which, being a manually collected dataset, can be, in
some sense, treated as a good representative of the indeed used
and installed apps. The query script was run with the help of the
PyGitHub library22; the repositories URLs were additionally filtered
to minimize potential intersections with the AwesomemacOS open-
source. The search results were additionally checked and filtered
accordingly for release existence, and downloaded archives were
scanned for the .app extension file’s presence. Several apps (primar-
ily miners) were removed due to security issues: they were tracked
by our checks as malicious.

In such a way, the final GitHub dataset contains 1162 apps: 520
Awesome and 642 queried apps, respectively.

4.1.5 Feature Extraction. In general, for the feature extraction, we
followed a strategy similar to the original paper but performed
both static and dynamic extraction in a single step and extended
the features with a part of the application bundle info. In particular,
the following data was extracted:

• App binaries entitlements
• App bundle’s information from the Info.plist file: app category,
disk size, minimum OS version, and plist modification date

• Dynamic sandbox state, extracted with the provided in [3]
code after launching the app

The same data, except the dynamic sandbox state, was extracted
for each XPC service.

Due to our previous belief that modern applications had reduced
the launch time, the initial intention was to skip waiting 30 seconds
to finish the initialization routines after launching, as mentioned
in [3]. However, the experiments revealed the necessity of this step:
17https://formulae.brew.sh/cask/
18https://brew.sh/
19https://formulae.brew.sh/api/cask.json
20https://github.com/serhii-londar/open-source-mac-os-apps/tree/master
21https://docs.github.com/en/rest?apiVersion=2022-11-28
22https://pygithub.readthedocs.io/en/stable/index.html

https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/iTuneSearchAPI/Searching.html#//apple_ref/doc/uid/TP40017632-CH5-SW1
https://developer.apple.com/library/archive/documentation/AudioVideo/Conceptual/iTuneSearchAPI/Searching.html#//apple_ref/doc/uid/TP40017632-CH5-SW1
https://github.com/mas-cli/mas
https://github.com/mas-cli/mas?tab=readme-ov-file#%EF%B8%8F-known-issues
https://www.macupdate.com/
https://formulae.brew.sh/cask/
https://brew.sh/
https://formulae.brew.sh/api/cask.json
https://github.com/serhii-londar/open-source-mac-os-apps/tree/master
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://pygithub.readthedocs.io/en/stable/index.html

R+R: State of the Application Sandboxing on macOS:
A Differentiated Replication Conference’17, July 2017, Washington, DC, USA

even after the process is launched and assigned with a PID, the
sandbox state can be determined with some delay; similar behavior
can be observed while manually launching the app and checking
the sandbox state in the Activity Monitor app. As a result, each app
waited for up to 30 seconds to be launched and an additional 10 sec
to get the sandbox state – and this appeared to be enough.

Of the all considered apps, more than 28% failed to launch:
• more than 12% – due to the unsuitable format of the exe-
cutable files or their absence after the source extraction,

• nearly 11% – due to damaged or incompatible .app bundle
files, and

• the rest – due to the absence of the macOS folder in the
application bundle, troubles with mounting or licenses.

4.2 Evaluation of Sandbox Adoption
In this section, we report the sandbox adoption state of each of the
considered apps’ sources separately, as well as the statistics for the
applications present in all the sources. Additionally, the current
adoption state is compared to the one reported in the original paper.

We stick to the definition introduced in the original paper and
treat the application sandboxed if it is both statically and dynami-
cally sandboxed: it has enabled entitlement and has an active sand-
boxed state in the running state.

4.2.1 Sandbox Adoption in General. Of the total 8908 launched
apps, for 6635 (almost 75%) wemanaged to extract both the dynamic
and static sandboxed states; the remaining 25% had at least one of
the states equal to null due to different extraction failures, which
can be a matter of future studies.

Fig 2 reports the sandbox adoption state for each of the sources.

Figure 2: Sandbox state by the store type.

As expected, MAS is the most ’sandboxed’ application provider:
of the 4314 analyzed apps, 4275 (99 %) are sandboxed. The next
place takes MU: out of 564 analyzed apps, 147 (26 %) are sandboxed.
OSS appeared to be the most ’unsandboxed’ store: only 313 (nearly
18 %) out of the 1757 apps are sandboxed.

4.2.2 Common Applications. The common applications were iden-
tified by their bundle identifiers. Only 9 apps with sandbox states
were present in all three stores: 4 apps were sandboxed in all ver-
sions, 1 app was unsandboxed in all versions, and for the remaining
4 apps, only the MAS versions were sandboxed.

Due to the small number of apps in the intersection of all stores,
we also analyzed them pairwise. OSS and MAS share 50 mutual

apps: 26 are sandboxed, 1 is unsandboxed in both versions, while
23 are sandboxed only in the MAS version. Out of 27 apps present
in both MU and MAS, 12 are sandboxed and one is unsandboxed
in both versions, while 14 are sandboxed only in the MAS version.
Among the 170mutual apps between OSS andMU, 28 are sandboxed
and 139 are unsandboxed in both providers, 2 are sandboxed only
in OSS, and 1 is sandboxed only in the MU version.

We do not undertake to compare these results with the original
ones due to the significantly smaller sample of data.

4.2.3 Bypassing the Sandbox. Let us first recall that while only
MAS and MU apps were analyzed in the original paper, in the
current work OSS apps are added to the consideration. Table 2
compares the currently obtained and those of the 2019 sandbox
adoption states. In particular, for both MAS and MU, a significant
improvement of more than 5% and 15%, respectively, is observed.
While in the case of MAS, it is quite an expected behavior due
to the twice longer time period passing since sandboxing became
mandatory for the Mac App Store distribution, the MU case allows
us to assume that the sandboxing obligation has a positive impact
on other application stores too. Although we can not track the
dynamic in OSS sandbox adoption state changes, the currently
observed of almost 18% seems quite comparative.

Table 2: Sandbox adoption state comparison

MAS MU OSS

2019 93.53 % 10.94 % N/A
2024 99.10 % 26.06 % 17.81 %

In the original work, the issue of bypassing the sandbox was re-
ported. Specifically, six MAS and eleven MU applications had their
sandbox static state enabled. However, upon dynamic extraction, it
was found that these applications did not maintain their sandbox
constraints. This discrepancy highlighted a critical security vulner-
ability. The issue was immediately reported to Apple, and with the
release of macOS 10.13.5, such sandbox evasions should not occur
in subsequent versions [3].

In our analysis, we concentrated on MAS apps more thoroughly.
Our findings revealed that the applications in our sample main-
tained their sandbox integrity as expected. This suggests that the
measures implemented in macOS 10.13.5 and later versions have
effectively mitigated the vulnerability.

4.2.4 Entitlements. In this section, we analyze the entitlements. In
order to compare and observe the dynamic of change, similar to
the original paper, only the sandboxed apps and the set of easily
configured via Xcode entitlements are taken into account. However,
we have not analyzed the changes in the entitlements number
between the MAS apps’ versions. We also skip the investigation of
the interplay between entitlements and MAS apps’ popularity, as
no such correlation was observed.

Distribution. We consider only entitlements present in at least
5% of all applications. Table 3 presents the distribution of the con-
sidered entitlements and compares them to those reported in 2019.

Conference’17, July 2017, Washington, DC, USA Iryna Pastukhova, Ivan Synytsia, and Nataliia Stulova

Table 3: Entitlements used by more than 5% of all apps

MAS OSS MU All

Entitlement 2024 2019 2024 2019 2024 2019 2024 2019

Client 65.92 % 65.21 % 69.97 % - 78.91 % 76.13 % 66.59% 65.88 %
User Selected Files (Read-write) 52.75 % 43.07 % 56.55 % - 80.27 % 81.41 % 53.85 % 45.42 %
User Selected Files (Read-only) 16.65 % 7.86 % 20.13 % - 8.84 % 3.72 % 16.64 % 7.60 %

Security-scoped Bookmarks 14.22 % 9.24 % 20.04 % - 37.41 % 31.12 % 15.46 % 10.58 %
Server 14.34 % 12.87 % 20.13 % - 13.61 % 14.68 % 14.70 % 12.98 %
Print 13.54 % 12.79 % 15.65 % - 29.25 % 32.09 % 14.17 % 13.97 %

App Groups 11.53 % 7.97 % 23.0 % - 20.41 % 10.18 % 12.57 % 8.11 %
Notifications 6.78 % - 7.67 % - 8.16 % - 6.89 % -

Downloads (Read-write) 5.87 % 5.37 % 12.78 % - 8.84 % 7.44 % 6.42 % 5.49 %
iCloud 5.33 % - 11.82 % - 15.65 % - 6.08 % -
Camera 5.52 % - 4.79 % - 6.80 % - 5.51 % -

Figure 3: Sandbox state by the store type.

Figure 4: Percentage of entitlements by category for each store type.

R+R: State of the Application Sandboxing on macOS:
A Differentiated Replication Conference’17, July 2017, Washington, DC, USA

The top two leaders stay the same: Client and User Selected Files
(Read-write) ahead by a wide margin; User Selected Files (Read-only)
and Security-scoped Bookmarks displaced Print and Server. Contrary
to the original results, in our sample, iCloud, Notifications, and
Camera managed to overcome the 5 % limit, but theMicrophone did
not. These changes likely represent changes in user requests for
features.

Co-occurrences. To maintain consistency with the original study,
the co-occurrences of entitlements were analyzed. Figure 3 shows
the corresponding results in percentages: overall, all store types
display similar trends.

Categories. The interplay between entitlements and app cate-
gories is analyzed based on entitlements present in more than 5%
of apps and categories present in at least 1% of all apps. The Games
category was excluded due to its presence only in MAS apps. As
shown in Figure 4, the stores exhibit somewhat different trends:
the distribution for MAS is the most uniform, while OSS and MU
display more contrasting trends.

Temporary Exception and Private Entitlements. All the sandboxed
apps were also analyzed for the Temporary Exception and Private
entitlements presence.

For the former, we obtained pretty close results to the original
ones: Apple Event remains the most popular with a small change
from 3.2 % in 2019 to 3.8% now. Global Mach Service temporary
exception, enabling lookup of one or more global Mach services23,
is the next most used (2.3%).

As the latter is not officially documented, we tried to identify
them by scanning the entitlements list for the ones starting with
com.apple.private, and none were found even, regardless of the
sandbox state.

4.2.5 Privilege Separation. Of all the sandboxed apps, 420 have
helpers with non-empty entitlement sets. We consider the entitle-
ment sets as they are, without any filtering. Each service with a
non-empty set of entitlements was classified as mixed if its entitle-
ments differed from the app’s, and same if they were similar to the
app’s and matched in values.

Of the 420 apps considered, 31 have helpers with the same privi-
leges (2 in MAS, 24 in OSS, and 5 in MU). For 79 apps (32 in MAS, 32
in OSS, and 15 in MU), each helper has mixed privileges, meaning
they differ from the app’s entitlements.

Finally, 92 apps (1 in MAS, 62 in OSS, and 29 in MU) have enti-
tlements, but none of their helpers do; the opposite case was not
observed. These numbers indicate that developers in MAS apps
most consistently follow the privilege separation strategy.

5 SECURITY AND PRIVACY IMPROVEMENTS
IN MACOS SONOMA

Given the difference in time between our study and the work of
Blochberger et al. [3], we discuss here the difference in operating sys-
tems, Apple released the current macOS Sonoma (14) on September
26, 2023. Compared to macOS Mojave (10.14), used in the reference

23https://developer.apple.com/library/archive/documentation/Miscellaneous/Refere
nce/EntitlementKeyReference/Chapters/AppSandboxTemporaryExceptionEntitleme
nts.html

work [3], the company has introduced and enforced several major
security improvements. We highlight below major changes in the
Apple security architecture, noting which could directly affect the
reproducibility of the reference work.

Dropping support for 32-bit applications. Apple has definitely
removed support24 for 32-bit applications starting from macOS
Catalina (10.15), which was released on October 7, 2019. From that
OS version on, only 64-bit applications, which are generally more
efficient, can run on macOS from version 14. While older 32-bit
apps can still be listed on and downloaded from the MAS, users
report25 that such apps would not launch.

In the context of the replication of the reference work, it means
the following:

• as it is not possible to obtain from the MAS accurate infor-
mation on whether the app is 32-bit or 64-bit, any automated
app download process might get a share of the application
that would not launch and could not be subject to any run-
time analysis (such as sandboxing status check, network
traffic monitoring, etc.), thus making dataset comparison
with the reference work inaccurate;

• researchers and practitioners will have to account for this
share of non-launchable apps when designing any studies
involving running applications;

• depending on the version of the macOS, that will be used
for running the experiments, different subsets of the original
app superset might launch and introduce bias

Switching from Kernel to System Extensions. Kernel extensions
in macOS are loadable kernel modules in the format of object files,
with which developers can add custom functionality to the OS
kernel, and later rely on that functionality whenwriting apps. Given
that such extensions operate in high privilege mode with direct
low-level access to hardware and system resources, since macOS
Catalina (10.15) Apple is requiring third party developers to switch
to System Extensions frameworks26, where each framework only
has access to its respective resource (e.g., Network Extension will
not have access to the file system).

In the context of the replication of the reference work, it means
that new apps or updated app versions running on macOS versions
10.15+ could require more entitlements than before.

Enhancing the Gatekeeper. For an application to run on macOS,
it has to pass a notarization27 process, which includes scanning for
malware signs and code signing checks. Code signing is a macOS
security technology used to certify that an app was created by an
application developer and help the system detect any change to the
app — whether the change is introduced accidentally or by mali-
cious code (e.g., asking additional entitlements). Gatekeeper28 is a
security mechanism on macOS, that checks application notariza-
tion status. Already macOS Catalina (10.15) required all software

24https://support.apple.com/en-us/103076
25https://discussions.apple.com/thread/251009413?sortBy=best
26https://support.apple.com/guide/deployment/system-and-kernel-extensions-in-
macos-depa5fb8376f/web
27https://developer.apple.com/documentation/security/notarizing_macos_software
_before_distribution
28https://support.apple.com/guide/security/gatekeeper-and-runtime-protection-
sec5599b66df/web

https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/AppSandboxTemporaryExceptionEntitlements.html
https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/AppSandboxTemporaryExceptionEntitlements.html
https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/AppSandboxTemporaryExceptionEntitlements.html
https://support.apple.com/en-us/103076
https://discussions.apple.com/thread/251009413?sortBy=best
https://developer.apple.com/documentation/security/notarizing_macos_software_before_distribution
https://developer.apple.com/documentation/security/notarizing_macos_software_before_distribution
https://support.apple.com/guide/security/gatekeeper-and-runtime-protection-sec5599b66df/web
https://support.apple.com/guide/security/gatekeeper-and-runtime-protection-sec5599b66df/web

Conference’17, July 2017, Washington, DC, USA Iryna Pastukhova, Ivan Synytsia, and Nataliia Stulova

for macOS to be notarized, but since macOS Ventura (13), the Gate-
keeper will check the notarization status every time the app is
launched, not just the first one, avoiding exploits where after the
first launch an app would escalate its privileges, and with network
connections off try to access extra resources. Developers must en-
sure that all application binaries and bundles are validly signed for
the first release and make sure those signatures remain valid after
updates. Otherwise, Gatekeeper would block an application from
launching. These additional integrity checks prevent the app from
being modified in certain ways.

Increasing the granularity of the application permissions. Since
macOS version Sonoma (14), Apple introduced29 more fine-grained
control over app permissions and data access. Applications must
explicitly ask the user for permission to access files and directories
individually.

Enhancing application sandboxing. Since 202130 App Sandbox
associates an app with its sandbox container using its code signa-
ture. The operating system asks the person using an app to grant
permission if it tries to access a sandbox container associated with
a different app. This futher limits cross-app resource access flows.

6 LIMITATIONS
In this section we would like to list some methodological decisions,
that might affect the comparison of our results and the results of
the reference work.

Most issues are with the MAS app collection, like in the previous
study. The later macOS versions do not allow the ‘purchase‘ opera-
tion. For macOS 10.14 and older, mac-cli can perform automatically
the full flow of selecting, ‘purchasing‘, and installing an app (the
flow is the same for both free and paid apps, the only difference
being the price). However, For macOS 10.15+, the ’purchase’ step is
always manual due to security considerations, so automated apps
installations are not possible anymore, which limits our data col-
lection — if a modern app does not have backward compatibility
with the 10.14 OS version, this app collection method will skip
it. Another issue is the MAS region limit (app can differ between
regions due to legal reasons), which could also affect differences
between datasets.

We also did not check how much our datasets overlap, which is
hard due to the limitations in application collection.

However, our results are encouraging, and their stability over
variations of the dataset content indicates that the impact of the
above-mentioned discrepancies is not significant.

Replication is also hard because sharing the app datasets is not
possible, so metadata dumps will have to be created at best in the
future for any cross-dataset content comparisons and app evolution
studies.

7 CONCLUSIONS
Our study extends the work of the Blochberger et al. [3] by ex-
amining the state of application sandboxing on macOS with an
updated dataset that includes open-source applications. We per-
formed a differentiated replication to verify the robustness of the

29https://developer.apple.com/videos/play/wwdc2023/10266/
30https://developer.apple.com/documentation/updates/security

original findings across different application sources and newer
macOS versions.

Our results align with the original findings that the official Mac
App Store has a high adoption rate of sandboxing, with 99.10% of
apps being sandboxed in our dataset compared to 93.53% in the
2019 study. This indicates that Apple’s policies have continued to
encourage widespread adoption of sandboxing. We also observe a
notable improvement in the adoption of sandboxing among applica-
tions from the MacUpdate platform. Our study shows a significant
increase to 26.06% from the 10.94% reported in 2019. This sug-
gests that even third-party platforms are increasingly adhering to
sandboxing practices, likely influenced by broader industry trends
and user expectations for security. For the first time, our study
includes open-source macOS applications, revealing that 17.81%
of these apps are sandboxed. While this is lower than the figures
for closed-source apps, it highlights that a substantial portion of
the open-source community is also adopting sandboxing practices.
This inclusion broadens the scope of security analysis on macOS,
demonstrating that open-source apps can and should be considered
in future studies.

The distribution and co-occurrence of entitlements have evolved,
reflecting shifts in application functionality and security practices.
Notable changes include the increased use of User Selected Files
(Read-only) and Security-scoped Bookmarks, suggesting developers
are adopting more fine-grained control over app permissions. Our
analysis shows that the Mac App Store apps consistently follow
privilege separation strategies, with a clear separation of entitle-
ments between the main app and its helpers. This practice is less
consistent among the open-source and MacUpdate apps.

ACKNOWLEDGMENTS
We thank the Armed Forces of Ukraine for providing security to com-
plete this work.

We thank Maximilian Blochberger for providing the data used
to prepare the original paper, Andrey Tkachenko for the assistance
in gathering data for this replication, and Ivan Taranenko for assis-
tance in running the local experimental setup.

REFERENCES
[1] Vitor Afonso, Antonio Bianchi, Yanick Fratantonio, Adam Doupe, Mario Polino,

Paulo De Geus, Christopher Kruegel, and Giovanni Vigna. 2016. Going Native:
Using a Large-Scale Analysis of Android Apps to Create a Practical Native-Code
Sandboxing Policy. In Proceedings 2016 Network and Distributed System Security
Symposium. Internet Society, San Diego, CA. https://doi.org/10.14722/ndss.2016
.23384

[2] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von
Styp-Rekowsky. 2015. Boxify: Full-fledged App Sandboxing for Stock Android.
691–706. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/backes

[3] Maximilian Blochberger, Jakob Rieck, Christian Burkert, Tobias Mueller, and
Hannes Federrath. 2019. State of the Sandbox: Investigating macOS Application
Security. In Proceedings of the 18th ACM Workshop on Privacy in the Electronic
Society (WPES’19). Association for Computing Machinery, New York, NY, USA,
150–161. https://doi.org/10.1145/3338498.3358654

[4] Thomas Bläsing, Leonid Batyuk, Aubrey-Derrick Schmidt, Seyit Ahmet Camtepe,
and Sahin Albayrak. 2010. An Android Application Sandbox system for suspi-
cious software detection. In 2010 5th International Conference on Malicious and
Unwanted Software. 55–62. https://doi.org/10.1109/MALWARE.2010.5665792

[5] Mihai Bucicoiu, Lucas Davi, Razvan Deaconescu, and Ahmad-Reza Sadeghi.
2015. XiOS: Extended Application Sandboxing on iOS. In Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security (ASIA
CCS ’15). Association for Computing Machinery, New York, NY, USA, 43–54.
https://doi.org/10.1145/2714576.2714629

https://developer.apple.com/videos/play/wwdc2023/10266/
https://developer.apple.com/documentation/updates/security
https://doi.org/10.14722/ndss.2016.23384
https://doi.org/10.14722/ndss.2016.23384
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes
https://doi.org/10.1145/3338498.3358654
https://doi.org/10.1109/MALWARE.2010.5665792
https://doi.org/10.1145/2714576.2714629

R+R: State of the Application Sandboxing on macOS:
A Differentiated Replication Conference’17, July 2017, Washington, DC, USA

[6] Kimo Bumanglag. 2022. An Application of Machine Learning to Analysis of Packed
Mac Malware. PhD thesis. Dakota State University, Madison, SD, USA. https:
//scholar.dsu.edu/theses/381

[7] Caio Augusto Pereira Burgardt. 2022.Malware detection inmacOS using supervised
learning. Master’s thesis. Universidade Federal de Pernambuco, Recife, Brasil.
https://repositorio.ufpe.br/handle/123456789/46235

[8] Luke Deshotels, Razvan Deaconescu, Mihai Chiroiu, Lucas Davi, William Enck,
and Ahmad-Reza Sadeghi. 2016. SandScout: Automatic Detection of Flaws in iOS
Sandbox Profiles. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’16). Association for Computing Machinery,
New York, NY, USA, 704–716. https://doi.org/10.1145/2976749.2978336

[9] Trevor Dunlap, William Enck, and Bradley Reaves. 2022. A Study of Application
Sandbox Policies in Linux. In Proceedings of the 27th ACM on Symposium on
Access Control Models and Technologies (SACMAT ’22). Association for Computing
Machinery, New York, NY, USA, 19–30. https://doi.org/10.1145/3532105.3535016

[10] ElizabethWalkup. 2014. MacMalware Detection via Static File Structure Analysis.
https://cs229.stanford.edu/proj2014/Elizabeth%20Walkup,%20MacMalware.pdf

[11] Ezgi Gucuyener and M. Amac Guvensan. 2024. Towards Next-Generation Smart
Sandboxes: Comprehensive Approach to Mobile Application Security. In 2024
12th International Symposium on Digital Forensics and Security (ISDFS). 1–6. https:
//doi.org/10.1109/ISDFS60797.2024.10527282 ISSN: 2768-1831.

[12] Hamed Haddad Pajouh, Ali Dehghantanha, Raouf Khayami, and Kim-Kwang Ray-
mond Choo. 2018. Intelligent OS Xmalware threat detection with code inspection.
Journal of Computer Virology and Hacking Techniques 14, 3 (Aug. 2018), 213–223.
https://doi.org/10.1007/s11416-017-0307-5

[13] Luyi Xing, Xiaolong Bai, Tongxin Li, XiaoFeng Wang, Kai Chen, Xiaojing Liao,
Shi-Min Hu, and Xinhui Han. 2015. Unauthorized Cross-App Resource Access on
MAC OS X and iOS. https://doi.org/10.48550/arXiv.1505.06836 arXiv:1505.06836
[cs].

[14] Yajin Zhou, Kunal Patel, Lei Wu, Zhi Wang, and Xuxian Jiang. 2015. Hybrid
User-level Sandboxing of Third-party Android Apps. In Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security (ASIA
CCS ’15). Association for Computing Machinery, New York, NY, USA, 19–30.
https://doi.org/10.1145/2714576.2714598

https://scholar.dsu.edu/theses/381
https://scholar.dsu.edu/theses/381
https://repositorio.ufpe.br/handle/123456789/46235
https://doi.org/10.1145/2976749.2978336
https://doi.org/10.1145/3532105.3535016
https://cs229.stanford.edu/proj2014/Elizabeth%20Walkup,%20MacMalware.pdf
https://doi.org/10.1109/ISDFS60797.2024.10527282
https://doi.org/10.1109/ISDFS60797.2024.10527282
https://doi.org/10.1007/s11416-017-0307-5
https://doi.org/10.48550/arXiv.1505.06836
https://doi.org/10.1145/2714576.2714598

	Abstract
	1 Introduction
	2 Related Work
	2.1 macOS Security
	2.2 Application Sandboxing

	3 Reference Work
	3.1 Context
	3.2 Design
	3.3 Data collection and analysis
	3.4 Limitations

	4 Differentiated replication
	4.1 Data Collection and Processing
	4.2 Evaluation of Sandbox Adoption

	5 Security and Privacy Improvements in macOS Sonoma
	6 Limitations
	7 Conclusions
	Acknowledgments
	References

